
TOWARDS TREATING GIS AS VIRTUAL RDF GRAPHS

Emanuele Della Vallea,b, Hafiz Muhammad Qasima and Irene Celinob

a Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio 34/5, Milano, Italy

emanuele.dellavalle@polimi.it, hafizqasim@gmail.com
b CEFRIEL, via Fucini 2, 20133 Milano – irene.celino@cefriel.it

KEY WORDS: GIS, SPARQL, Semantic Web

ABSTRACT:

In this paper, we report our experience in addressing practical computational issues influencing the use of Geographic Information
Systems and Geo-spatial data from the standpoint of Semantic Web. We discuss the need for treating GIS as Virtual RDF Graphs. In
particular, we present a declarative mapping language as well as a prototypical system (namely G2R) that allows SPARQL query
involving spatial computation to be executed in a mixed environment where a GIS and a RDF repository are orchestrated. The
approach is evaluated by comparing G2R against two similar solution provided by Virtuoso e AllegroGraph.

1. INTRODUCTION

An increasing number of open data sets is becoming available
on the Web. Linked Data (LD) plays a central role thanks to
projects such as W3C Linked Open Data (LOD) community
project1 that are fostering LD best practice adoption. As of
November 2009, 13.1 billions of triples2 [1] have been
published in the LOD cloud.
The most notable example is DBpedia [2] that publishes as LD
structured information extracted from the Wikipedia infoboxes3,
but the complete list includes information about scientific
publications, geographic locations, people, companies, books,
movies, music, television, radio programmes, and online
communities.
Note that part this datasets describe real world entities such as
monuments, companies, artists, actors, people. This kind of data
has a spatial dimension; however the Semantic Web community
has devoted very limited attention to exploit this dimension.
LinkedGeodata [3] is one of the earliest successful attempts. It
exposes as LD 320 million nodes and 25 million ways (June
2009).contained in Open Street Map4 and it offers simple Web
APIs to look for point of interest in a given radius from a
geographic position. This feature is also supported by two
Semantic Web frameworks: Virtuoso5 and Allegrograph6.
However, none of the available framework supports the rich
features normally available in a GIS.
In this paper, we report our experience in extending SPARQL
(the Semantic Web query language) with typical GIS features
by treating a GIS as Virtual RDF Graphs [9-12,15]. In
particular, we present a declarative mapping language as well as
a prototypical system (namely GIS-to-RDF or simply G2R) that
allows SPARQL query involving spatial computation to be

1

 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingO
penData/

2 Triples are the minimal building block of Semantic Web, see Section
2 for further explanation.

3 http://en.wikipedia.org/wiki/Wikipedia%3AInfobox
4 Open Street Map (http://www.openstreetmap.org) is a popular Web

site for collaborative building an open map of the world.
5 http://www.openlinksw.com/weblog/oerling/?id=1587
6 http://www.franz.com/agraph/support/documentation/current/

sparql-geo.html

executed in a mixed environment where a GIS and a standard
SPARQL endpoint are orchestrated.
The rest of the paper is organized as follows: Section 2 provides
a minimal background to understand the paper; Section 3
presents a running example that we used throughout the paper;
Section 4 provides an architectural overview of G2R; Section 5
describes G2R mapping language; Section 6 shows how G2R
rewrites SPARQL queries into SQL statements that use spatial
methods; Section 7 briefly reports on our implementation
experience, Section 8 provides a comparative evaluation; and,
finally, Section 9 concludes.

2. BACK GROUND WORK

In this section, first we briefly present three Semantic Web
basic building blocks: RDF, RDF-S and SPARQL. Secondly we
discuss approaches that enable treating non-RDF databases as
Virtual RDF graphs. Then, we discuss state of the art in adding
a spatial dimension to the Semantic Web.

2.1 Semantic Web Building Blocks

2.1.1 RDF and RDF-S
RDF [4] – Resource Description Framework – is the data
model, standardize by W3C in the context of the Semantic Web
activities, for representing Semantic Web resources. It
expresses information as graphs consisting of triples with
subject, property and object. All of them can be identified using
IRIs. RDF allows describing a generic resource (the subject of
the triples) by stating that a predicate (the property) assumes a
given value (the object).
Consider, for instance, the graph in Table 1. It describes “St
Mark’s Clocktower” in Venice. It is taken from DBpedia. The
resource http://dbpedia.org/page/St_Mark%27s_Clocktower
(at line 6) is stated (at line 7) to belong to the category “Visitor
attractions in Venice” using the property skos:subject [5].
In order to explain the rest of the RDF graph in Table 1, we
need to introduce7 the notion of vocabulary and RDF-S [6] –
RDF Schema – as one of the language available for describing
vocabularies in the Semantic Web.

7 Readers are not supposed to know RDF-S (or more

expressive language) for the purpose of this paper; therefore
we limit the description to a minimum.

1. @prefix dbpedia: <http://dbpedia.org/resource/> .
2. @prefix dbcat: <http://dbpedia.org/resource/Category:> .
3. @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
4. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
5. @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

6. http://dbpedia.org/resource/St_Mark%27s_Clocktower
7. skos:subject dbcat: Visitor_attractions_in_Venice;
8. rdfs:label "St Mark's Clocktower"@en ;
9. geo:long "12.338912"^^xsd:float ;
10. geo:lat "45.434710"^^xsd:float .

Table 1 - Part of the RDF graph that described the “Basilica of
Sant’Ambrogio” in DBpedia.

A vocabulary is a collection of properties (such as the
skos:subject property that we exemplified above) and
concepts for which the semantics is defined using an
ontological language. RDF-S, as light ontological language,
allows defining classes, and properties. For instance, RDF-S is
used to model the W3C vocabulary for geo positioning [7].
Among other things, this vocabulary introduces the properties
geo:lat and geo:long that respectively represent latitude and
longitude using WGS84 as a reference datum. Use of these two
properties is shown at line 9 and 10 in Table 1.
RDF-S also offers a small vocabulary to describe resources.
e.g., rdf:label which is largely used to attach a textual label to
a resource; see line 8 in Table 1.

2.1.2 SPARQL
SPARQL [8] – Simple Protocol And RDF Query Language – is
the language, proposed by W3C, for querying RDF data
published on the Web. SPARQL offers a syntactically SQL-like
language for querying RDF graphs.
A SPARQL query is composed by five parts (see Figure 1):
zero or more prefix declarations, a query result clause, zero or
more FROM or FROM NAMED clauses, a WHERE clause and zero or
more query modifiers.

PREFIX foo: <…>
PREFIX bar: <…>
…
SELECT …
FROM <…>
FROM NAMED <…>
WHERE {

…
}
ORDER BY …
LIMIT …
OFFSET …

Declare prefix
shortcuts
(optional)

Query result
clause

Triple patterns

Query
modifiers
(optional)

Define the
dataset

(optional)

Figure 1 The anatomy of a SPARQL Query

The optional PREFIX declarations introduce shortcuts for long
IRIs as normally done when working with XML namespaces.
Such prefixes can be used in the WHERE clause.
The query result clause specifies one of the four form of the
results: SELECT, ASK, CONSTRUCT and DESCRIBE. SELECT queries,
the only one we treat in this paper, provide answers in a tabular
form as if the SPARQL query were a SQL query executed
against a relational database. The optional set of FROM or FROM
NAMED clauses define the dataset against which the query is
executed.
The WHERE clause is the core of a SPARQL query. It is specified
in terms of a set of triple patterns. As extensively explained in
the following sections, these triple patterns are used to select
the triples composing the result.
Finally, the set of optional query modifiers operate over the
triples selected by the WHERE clause, before generating the

result. As in SQL, the clause ORDER BY orders the results set, the
LIMIT and OFFSET allow getting results in chunks.

2.2 Treating non-RDF Database as Virtual RDF Graphs

As Semantic Web technologies are getting mature, there is a
growing need for RDF applications to access the content of
non-RDF, legacy databases without having to replicate the
whole database into RDF.
Since 2003, several solutions have been conceived and
implemented [9-12,15]. Conceptually, they are very similar.
They provide (in slightly different ways) declarative languages
to describe mappings between relational database schemata and
RDF-S vocabularies (or more expressive ontological
languages). Once the mapping is ready, they can use it to
rewrite SPARQL query in SQL. We refer interest readers to [9]
and [10] for a comprehensive explanation of the mapping
languages of D2RQ and Virtuoso and of the query rewriting
algorithms.

2.3 State-of-the-Art in Spatial Dimension of Semantic Web

As we report in Section 1, the Semantic Web community has
devoted very limited attention to the spatial dimension of
Linked Data. In this section we briefly present two successful,
but limited, attempts in this direction: Virtuoso and
Allegrograph.

2.3.1 Virtuoso
Virtuoso is a hybrid middleware and database engine that
among many other features supports RDF and SPARQL. In
particular, Virtuoso includes a spatial extension to SPARQL
inspired by SQL MM spatial specification [13]. Spatial
indexing is supported by a two dimensional R-tree
implementation. The geometries supported are limited to two
dimensions, with a choice of WGS 84 latitude and longitude
coordinates with haversine distances or a flat 2 dimensional
plane for spatial reference system.
Virtuoso supports few spatial data types (i.e., points and
geometry) and provides some basic functions for spatial
processing compatible with SQL/MM spatial standard [13], i.e.,
st_contains, st_distance, st_intersects, and st_within. The
proposed SPARQL extension is SPARQL compliant as it use
extensible value testing (see Section of [8]). For instance, the
SPARQL query in Table 2 counts the objects of each class
occurring within 100 km of <0, 52>, a point near London.

1. PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
2. SELECT ?class COUNT (*)
3. WHERE {
4. ?m geo:geometry ?geo .
5. ?m rdf:type ?class .
6. FILTER (bif:st_intersects(?geo, bif:st_point(0, 52), 100))
7. } GROUP BY ?class

Table 2 – An example of spatial enhanced SPARQL query
supported by Virtuoso.

2.3.2 AllegroGraph
AllegroGraph is a Semantic Web application framework.
Among other features, AllegroGraph supports an encoded data-
type for geospatial coordinates, and extends SPARQL to
support for geospatial queries.
It introduces a special syntax to match variables by the means
of: (a) RADIUS, taking a cartesian point and a numeric radius, or
(b) BOUNDINGBOX, taking two points, or (c) HAVERSINE, taking a
spherical point and a radius. Moreover, it defines extension
functions to measure cartesian and haversine distance. Table 3

shows an example of spatial enhanced SPARQL query
supported by AllegroGraph.

1. SELECT * {
2. GEO
3. SUBTYPE ...
4. RADIUS (POINT(?lon, ?lat), ?rad) {
5. # Some patterns, possibly mentioning ?lon, ?lat, ?rad.
6. }
7. WHERE {
8. ?p foo:placename "Home" ;
9. geo:lat ?lat ;
10. geo:lon ?lon .
11. OPTIONAL { ?p geo:radius ?rad . }
12. }
13. }

Table 3 – An example of spatial enhanced SPARQL query
supported by AllegroGraph.

3. RUNNING EXAMPLE

In this section, we present a simple running example that
requires both a light reasoning support and the features of a
GIS.
As we stated in the Section 1, a large part of LD has a spatial
dimension. Consider, as a notable example, the squares and the
monuments of a city. In DBpedia the categories “squares and
plazas by city”8 and “visitor attraction by city”9 exist. They
both have a subcategory for each city, which in turn contains
other subcategories. Actual squares and visitor attractions are
leafs in these two disjoint trees of categories. Each square or
visitor attraction is described with a large set of information
including their latitude and longitude. Moreover, geo-tagged
photos of squares and monuments already interlinked with
DBpedia resources can be obtained using simple solutions like
flickr™ wrappr [14]. Finally, the shape of the squares and of
the buildings that contains the visitor attraction can be retrieved
from OpenStreetMap.
Given this information, our running example requires to design
a system able to answer the following question:

Which are the monuments of Italy that overlook a
square in which more than 100 photos where geo-
tagged?

Figure 2 St Mark’s Square as in OpenStreetMap. The lines in
overlay represent the shape of the buildings, the boundaries of
the square and the streets. The dots are point of interest.

8 http://dbpedia.org/page/Category:Squares_and_plazas_by_city
9 http://dbpedia.org/page/Category:Visitor_attractions_by_city

Figure 3 St Mark’s Square as in Flikr, more than 2 hundred
thousand photo are geotag with latitude and longitude
compatible with Venice.

The query is difficult to answer for many reasons. It requires
selectively traversing the transitive closure of the two DBpedia
category trees in order to retrieve the squares and the visitor
attractions of Italian cities. It requires retrieving the shape of the
squares from OpenStreetMap (see Figure 2, for an example
related to Venice), retrieving the photos from Flikr (see Figure
3, for an example related to venice), and checking if at least the
geotags of 100 photos are contained in one of the squares.
Finally, it requires retrieving from OpenStreetMap also the
shape of the buildings that contains the visitor attractions and
checking if the these shapes touch the shape of the squares (i.e.,
the building overlooks the square).
As an answer, for instance concerning St Mark square in
Venice, we may expect:
• St Mark’s Basilica

http://dbpedia.org/page/St_Mark%27s_Basilica
• St Mark's Clocktower

http://dbpedia.org/page/St_Mark%27s_Clocktower
• Doge's Palace

http://dbpedia.org/page/Doge%27s_Palace

4. ARCHITECTURE

Answering the query formulated in Section 3 requires a system
with the following characteristics:

1. ability to process RDF and to access and process LD such
as DBpedia;

2. minimal reasoning support to compute the transitive
closure of the two trees of categories;

3. (last but not least) support for comparing geometries, such
as contains and touches.

Two extreme solutions for such a system can be envisioned:
• adding geometric data types and methods to a native RDF

repository and extend SPARQL to handle such data types
and invoke such methods; or

• providing access to non-RDF, GIS databases, using the
Virtual RDF approach [9], thus extending both the
mapping language and SPARQL to handle GIS data types
and geometric methods.

AllegroGraph is an example of the first approach; Virtuoso is
an early, but limited attempt, of the second approach strictly
coupled with its SQL engine. Our GIS-to-RDF (G2R) approach
is an attempt to provide a solution that can be coupled with any
GIS using a mapping file.

The architecture of G2R is illustrated in Figure 4. The G2R
Engine is in the centre of the figure. It enables both remote and
local standard SPARQL clients to query data in a GIS as long
as the G2R Engine is provided with an appropriate mapping
file.

Java

H
TT
P

Local SPARQL
Clients

SPARQL G2R
Engine

Remote SPARQL
Clients

GIS

G2R
mapping

file

Figure 4 the architecture of G2R Engine

The mapping file format is an extension of D2RQ format [15].
G2R mapping language supports any SQL92 compatible
database (thanks to D2RQ mapping language) and allows
coupling any GIS for which a one-to-one mapping to SQL/MM
spatial methods and data types can be written.

5. G2R MAPPING LANGUAGE

As we anticipated in Section 4, G2R mapping language extends
D2RQ mapping language [9].
Both are declarative languages for describing the relation
between a relational database schemata and RDF-S
vocabularies (or OWL ontologies). A database schema is
mapped in a RDF-S vocabulary using d2rq:ClassMap and
d2rq:PropertyBridge. A ClassMap specifies how to retrieve
instances of a given class from the database. PropertyBridges,
instead, specify how to retrieve the pair of <property,value> for
each instance, and how to relate instances with a given
property.
For instance, consider the ER model in Figure 5; it represents a
building in OpenStreetMap. Mapping it to RDF requires a
ClassMap and a PropertyBridge.
The ClassMap maps the entity “Building” in a RDF-S Class,
e.g., http://linkedgeodata.org/vocabulary#building; and
virtually creates instances using the following IRI pattern:
http://ex.g2r.org/buildings/@@ID@@. The PropertyBridge
can map the attribute “name” of the entity “Building” in
rdfs:label and virtually creates triples such as:

ex:25466045 rdfs:label "St Mark's Clocktower".

Building
string: name

int: ID
polygon: area

Figure 5 An ER model of a building in OpenStreetMap.

The attribute “area” cannot be mapped using D2RQ, because it
use the geometric data type polygon. G2R offers an extension
of d2rq:PropertyBridge, named g2r:SpatialPropertyBridge,
that allows to map the attribute “area” to any property whose
range is a g2r:Geometry.

Geometry

Surface Curve Point GeometryCollection

CurvePolygon

Polygon Linear Circular Compound MultiSurface MultiCurve MultiPoint

Figure 6 G2R hierarchy of classes representing SQL/MM
spatial standard data types.

G2R support all geometry data types defined in SQL/MM
spatial standard (see Section 2.2 of [13]). G2R hierarchy of
classes is illustrated in Figure 6. For instance, the
SpatialGeometryBridge in Table 4 maps the attribute “area”
(identified at line 4 using the property g2r:spatialColumn) into
the user defined property ex:hasSurface (see line 3) whose
domain is a g2r:Polygon (as specified at line 5).

1. map:area a g2r:SpatialPropertyBridge;
2. d2rq:belongsToClassMap map:Building;
3. d2rq:property ex:hasSurface;
4. g2r:spatialColumn "area";
5. d2rq:datatype g2r:Polygon .

Table 4 – An example of G2R mapping applied to the attribute
“area” of the entity “Building” shown in Figure 5.

Last, but not least, G2R offers the full range of spatial methods
specified in SQL/MM spatial standard (see Section 2.3 of [13]).
It includes methods to:

• convert to and from exchange data formats such as
GML (i.e., g2r:AsGML);

• retrieve properties of the geometry such as the length
(i.e., g2r:Length), or the coordinates of a point in the
geometry (i.e., g2r:_N where N=1 is the start point);

• compare two geometries such as
o g2r:isDisjoint that tests whether two geometries

do not intersect;
o g2r:intersects, g2r:crosses, and g2r:overlaps

that test whether the interiors of the geometries
intersect;

o g2r:touches that tests whether two geometries
touch at their boundaries, but do not intersect in
their interiors; and

o g2r:isWithin and g2r:contains that test whether
one geometry is fully within the other.

• generate new geometries such as
o g2r:Point, g2r:Polygon, and similar ones for all

the other geometric data types that creates
geometric instances;

o g2r:createBuffer that generates a buffer at a
specific distance around the given geometry;

o g2r:createConvexHull that computes the convex
hull for a geometry; and

o g2r:Difference, g2r:Intersection, g2r:Union

that construct the difference, intersection, or union
between the point sets defined by two geometries.

All these methods can be invoked within a standard SPARQL
query in the FILTER clause leveraging the Extensible Value
Testing of SPARQL (see Section 11 of [8]). For an example,
see lines 9 and 10 in Table 5.

6. QUERYING G2R

As explained in Section 4, a G2R Engine can be queried using a
standard SPARQL query. For instance, a large part of the
running example query, presented in Section 3, can be encoded
in SPARQL as shown in Table 5.

1. SELECT ?squareName ?attractionName
2. FROM
3. WHERE {
4. ?square rdfs:label ?squareName .
5. ?square ex:hasSurface ?squareSurface .
6. ?attraction rdfs:label ?attractionName .
7. ?attraction ex: hasSurface ?attractionSurface .
8. ?photo ex:geoTagged ?point .
9. FILTER (g2r:contains(?squareSurface, ?point) &&
10. g2r:touches (?squareShape, ?attractionShape))

11. } GROUP BY ?squareName
12. HAVING (COUNT(?photo) > 100).

Table 5 – An example of SPARQL query that G2R can evaluate
leveraging a GIS like PostGIS.

Let’s assume that all data are stored in PostGIS10 as three
tables: squares, buildings and photos. Let’s also assume that all
three tables have been mapped already in RDF as illustrated in
Section 5 using G2R mapping language. When the G2R Engine
receives the SPARQL query in Table 5, it rewrites such a query
in the SQL statement shown in Table 6. Note that such
statement employs the spatial method ST_Within and
ST_Touches.

1. SELECT s.name, b.name,
2. FROM buildings AS b, squares AS s, photos AS p
3. WHERE b.area.ST_Within(p.geoTagged) = 1 AND
4. b.area.ST_Touches (s.area) = 1
5. GROUP BY s.name
6. HAVING COUNT (p.geoTagged) > 100

Table 6 – The SQL statement obtained by G2R Engine when
processing the SPARQL query in Table 5.

The missing part of the running example query, presented in
Section 3, is the one that transitively traverse the DBpedia
category trees of “squares and plazas by city” and “visitor
attraction by city” selecting only squares and visitor attraction
from Italy. The complete SPARQL query, which makes use of
SPARQL 1.1 [16] subquery support, is illustrated in Table 7.
The two subqueries are highlighted in grey.

1. SELECT ?squareName ?attractionName
2. FROM
3. WHERE {
4. ?square rdfs:label ?squareName .
5. { SELECT ?square
6. WHERE {
7. ?square skos:subject dbcat:squares_and_plazas_by_city

.
8. ?square owl:sameAs ?squareInGeoNames .
9. FILTER (regex(str(?squareInGeoNames), “geonames”)
10. ?squareInGeoNames gn:inCountry gn:IT . }
11. }
12. ?square ex:hasSurface ?squareSurface .
13. ?attraction rdfs:label ?attractionName .
14. { SELECT ?attraction
15. WHERE {
16. ?attraction skos:subject dbcat:visitor_attraction _by_city

.
17. ?attraction owl:sameAs ?attractionInGeoNames .
18. FILTER (regex(str(?attractionInGeoNames),

“geonames”)
19. ?attractionInGeoNames gn:inCountry gn:IT . }
20. }
21. ?attraction ex: hasSurface ?attractionSurface .
22. ?photo ex:geoTagged ?point .
23. FILTER (g2r:contains(?squareSurface, ?point) &&
24. g2r:touches (?squareShape, ?attractionShape))
25. }
26. GROUP BY ?squareName
27. HAVING (COUNT(?photo) > 100).

Table 7 – A SPARQL query that capture the running example
query presented in Section 3.

Executing each of the two subqueries requires a SPARQL
endpoint that evaluates them under RIF entailment regimes (see
section 2.7 of [17]), because it has to process the two
production rules shown in Table 8.

10 PostGIS is an open source software program that adds

support for geographic objects to the PostgreSQL database.
Interested readers can read more at the following location
http://www.postgis.org/.

1. IF (?i skos:subject ?x) and (?x skos:broader?y)
 THEN (?i skos:subject ?y)

2. IF (?x skos:broader ?y) and (?y skos:broader ?z)
 THEN (?x skos:broader ?z)

Table 8 – Two rules that capture a possible interpretation of
SKOS vocabulary.

The first rule declares that if a resource belongs to a category
(i.e., is related to a category by skos:subject), then it also
belongs to the its direct super-category (i.e., a category related
to the stated one by skos:broader). The second one allows to
transitively traverse the hierarchy of categories following the
skos:broader properties.

7. IMPLEMENTATION EXPERIENCE

Using the LarKC platform [18], we designed and implemented
a G2R Engine able to process queries of the kind shown in
Table 8.
The LarKC platform has a pluggable architecture in which it is
possible to exploit techniques and heuristics from diverse areas
such as databases, machine learning, cognitive science,
Semantic Web, and Geographic Information Systems. A LarKC
application consists of a number of pluggable components
arranged in a workflow executed by the LarKC platform.
LarKC plug-ins cover a variety of tasks, each one concretized
by a different plug-in type:

• Identification of sources of information potentially
useful to answer the query issued by the client;

• Fetching information from the identified sources;
• Selection of a relevant subset of the fetched

information;
• Translation of information from the source format in

RDF or translation of queries from SPARQL to
source specific query language; and

• Reasoning on the collected information in order to
provide answers to the query issued by the client.

Following the approach described in [19], when G2R receives
the queries, first of all, it uses the Linked Data Search Engine
Sindice [20] to identify potentially useful resources in DBpedia,
and it fetch them. Secondly, the G2R Engine uses a query
translator to look for subqueries like the those highlighted in
Table 7; if it finds them, it evaluates them using as reasoner the
Jena General Purpose Rule Engine [21] which support
SPARQL under RIF entailment regime. Finally, for each square
and visitor attraction in the same city, it rewrites the SPARQL
query shown in Table 5 into the SQL statement shown in Table
6. It does so by using another query translator that interprets
the mapping file designed by the user. The statement is
evaluated by PostGIS and results are translated back into a
SPARQL variable binding which is sent back to the client.

8. COMPARATIVE EVALUATION

A comparison of G2R, Virtuoso and AllegroGraph, on the bases
of the spatial features supported, is illustrated in Table 9 and 10.

Data Type G2R Virtuoso AllegroGrap
h

Geometry √ √
- Surface √
 -CurvePolygon √
 - Polygon √
- Curve √
 - Linear √
 - Circular √
 - Compound √

- Point √ √ √
- GeometryCollection √
 - MultiSurface √
 - MultiCurve √
 - MultiPoint √

Table 9 – A comparison between G2R, Virtuoso and
AllegroGraph supported data types.

Data Type G2R Virtuos
o

AllegroGrap
h

convert to and from exchange data
formats

√ √1

retrieve properties √ √2
compare two geometries √
 - is disjoint √
 - intersects √ √
 - crosses √
 - overlaps √
 - touches √
 - is within/contains √ √4 √4
generate new geometries √ √3
 √
 √
 √
1 limited to WKT representations
2 limited to isGeometry
3 limited to Point data type
4 limited to points contained in a given radius

Table 10 – A comparison between G2R, Virtuoso and
AllegroGraph supported spatial methods.

As one can read from the table, the approach of G2R to treat
GIS as Virtual RDF Graphs pays off. Instead of re-
implementing GIS support in Semantic Web framework, G2R
allows for mapping spatial data types into any RDF-S
vocabulary (or OWL ontology) and to benefit from a large set
of already implemented method that operates on spatial data
types.

9. CONCLUSIONS

In this paper, we reported our experience in adding a spatial
dimension to the Semantic Web and, in particular, to SPARQL.
We discussed the need for treating GIS as Virtual RDF Graphs,
instead of re-implementing typical GIS functionalities in
existing Semantic Web frameworks.
The core of our contribution is a declarative mapping language
that extends D2RQ mapping language [15] to support spatial
data types.
We also present our prototypical implementation of a G2R
Engine based on the LarKC framework. Such prototype allows
SPARQL query involving spatial computation to be executed in
a mixed environment where a GIS (i.e., PostGIS) and a
SPARQL endpoint, operating under RIF entailment regime
(i.e., Jena General Purpose Rule Engine), are orchestrated.
The approach is evaluated by comparing G2R against two
similar solution provided by Virtuoso e AllegroGraph. A
broader qualitative comparison with other existing solutions as
well as s quantitative comparison on a large data set is next in
our research agenda.

10. ACKNOWLEDGMENTS

This research has been partially supported by the LarKC EU co-
funded project (ICTFP7-215535).

11. REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1-22, 2009.

[2] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R.
Cyganiak, and S. Hellmann. DBpedia - a crystallization point
for the web of data. J. Web Sem., 7(3):154-165, 2009.
[3] Sören Auer, Jens Lehmann, Sebastian Hellmann:
LinkedGeoData: Adding a Spatial Dimension to the Web of
Data. International Semantic Web Conference 2009: 731-746
[4] Patrick Hayes, RDF Semantics. W3C Recommendation 10
February 2004. Available on line at http://www.w3.org/TR/rdf-
mt/
[5] Miles, A and Bechhofer, S.: SKOS Simple Knowledge
Organization System. W3C Proposed Recommendation 15 June
2009. Available online at http://www.w3.org/TR/2009/PR-skos-
reference-20090615/
[6] Brickley, Dan and Guha, Ramanatgan V.: RDF Vocabulary
Description Language 1.0: RDF Schema , February (2004) .
[7] Brickley, D.: WGS84 Geo Positioning: an RDF vocabulary.
February, 2004. Available online at http://www.w3.org/2003/
01/geo/
[8] Prud'hommeaux, E. and Seaborne, A. (ed.): SPARQL Query
Language for RDF, W3C Working Draft 4 October 2006.
Available online at http://www.w3.org/TR/2006/WD-rdf-
sparql-query-20061004/
[9] Chris Bizer, Richard Cyganiak, Jörg Garbers, Oliver
Maresch, Christian Becker, The D2RQ Platform v0.7 - Treating
Non-RDF Relational Databases as Virtual RDF Graphs. User
Manual and Language Specification. August, 2009. Available
online at http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/
[10] Orri Erling, Ivan Mikhailov. Mapping Relational Data to
RDF in Virtuoso Virtuoso. Available online at:
http://virtuoso.openlinksw.com/wiki/main/Main/VOSSQLRDF
[11] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian
Hellmann, David Aumueller: Triplify: light-weight linked data
publication from relational databases. WWW 2009: 621-630
[12] SquirrelRDF. http://jena.sourceforge.net/SquirrelRDF/
[13] Stolze, Knut: SQL/MM Spatial - The Standard to Manage
Spatial Data in a Relational Database System, Vol. 26 GI
(2003), S. 247-264 .
[14] Christian Becker, Chris Bizer. flickr™ wrappr. Available
online at http://www4.wiwiss.fu-berlin.de/flickrwrappr/
[15] C. Bizer. D2R MAP - A Database to RDF Mapping
Language. In WWW (Posters), 2003.
[16] Steve Harris and Andy Seaborne, SPARQL 1.1 Query.
W3C Working Draft 22 October 2009. Available online at
http://www.w3.org/TR/2009/WD-sparql11-query-20091022/
[17] Birte Glimm and Bijan Parsia, SPARQL 1.1 Entailment
Regimes. W3C Working Draft 22 October 2009. Available
online at http://www.w3.org/TR/2009/WD-sparql11-entailment-
20091022/
[18] Fensel, D, van Harmelen F, Andersson B, Brennan P,
Cunningham H, Della Valle E, Fischer F, Huang Z, Kiryakov
A, Lee T K, School L, Tresp V,Wesner S,Witbrock M, and
Zhong N. Towards LarKC: A Platform for Web-scale
Reasoning. In Proceedings of the Second IEEE International
Conference on Semantic Computing (ICSC 2008), Santa Clara,
California
[19] Emanuele Della Valle, Irene Celino, Daniele Dell'Aglio:
The Experience of Realizing a Semantic Web Urban
Computing Application. T. GIS 14(2): 163-181 (2010)
[20] Eyal Oren, Renaud Delbru, Michele Catasta, Richard
Cyganiak, Holger Stenzhorn, Giovanni Tummarello:
Sindice.com: a document-oriented lookup index for open linked
data. IJMSO 3(1): 37-52 (2008)
[21] Dave Reynolds. Jena 2 Inference support. Available online
at http://jena.sourceforge.net/inference/

