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ABSTRACT: 
 
In this paper, we report our experience in addressing practical computational issues influencing the use of Geographic Information 
Systems and Geo-spatial data from the standpoint of Semantic Web. We discuss the need for treating GIS as Virtual RDF Graphs. In 
particular, we present a declarative mapping language as well as a prototypical system (namely G2R) that allows SPARQL query 
involving spatial computation to be executed in a mixed environment where a GIS and a RDF repository are orchestrated. The 
approach is evaluated by comparing G2R against two similar solution provided by Virtuoso e AllegroGraph. 
 
 

1. INTRODUCTION 

An increasing number of open data sets is becoming available 
on the Web. Linked Data (LD) plays a central role thanks to 
projects such as W3C Linked Open Data (LOD) community 
project1 that are fostering LD best practice adoption. As of 
November 2009, 13.1 billions of triples2 [1] have been 
published in the LOD cloud.  
The most notable example is DBpedia [2] that publishes as LD 
structured information extracted from the Wikipedia infoboxes3, 
but the complete list includes information about scientific 
publications, geographic locations, people, companies, books, 
movies, music, television, radio programmes, and online 
communities.  
Note that part this datasets describe real world entities such as 
monuments, companies, artists, actors, people. This kind of data 
has a spatial dimension; however the Semantic Web community 
has devoted very limited attention to exploit this dimension. 
LinkedGeodata [3] is one of the earliest successful attempts. It 
exposes as LD 320 million nodes and 25 million ways (June 
2009).contained in Open Street Map4 and it offers simple Web 
APIs to look for point of interest in a given radius from a 
geographic position. This feature is also supported by two 
Semantic Web frameworks: Virtuoso5 and Allegrograph6. 
However, none of the available framework supports the rich 
features normally available in a GIS. 
In this paper, we report our experience in extending SPARQL 
(the Semantic Web query language) with typical GIS features 
by treating a GIS as Virtual RDF Graphs [9-12,15]. In 
particular, we present a declarative mapping language as well as 
a prototypical system (namely GIS-to-RDF or simply G2R) that 
allows SPARQL query involving spatial computation to be 

                                                                 
1 

 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingO
penData/  

2  Triples are the minimal building block of Semantic Web, see Section 
2 for further explanation. 

3   http://en.wikipedia.org/wiki/Wikipedia%3AInfobox  
4  Open Street Map (http://www.openstreetmap.org) is a popular Web 

site for collaborative building an open map of the world. 
5  http://www.openlinksw.com/weblog/oerling/?id=1587 
6  http://www.franz.com/agraph/support/documentation/current/ 

sparql-geo.html  

executed in a mixed environment where a GIS and a standard 
SPARQL endpoint are orchestrated. 
The rest of the paper is organized as follows: Section 2 provides 
a minimal background to understand the paper; Section 3 
presents a running example that we used throughout the paper; 
Section 4 provides an architectural overview of G2R; Section 5 
describes G2R mapping language; Section 6 shows how G2R 
rewrites SPARQL queries into SQL statements that use spatial 
methods; Section 7 briefly reports on our implementation 
experience, Section 8 provides a comparative evaluation; and, 
finally, Section 9 concludes.  

2. BACK GROUND WORK 

In this section, first we briefly present three Semantic Web 
basic building blocks: RDF, RDF-S and SPARQL. Secondly we 
discuss approaches that enable treating non-RDF databases as 
Virtual RDF graphs. Then, we discuss state of the art in adding 
a spatial dimension to the Semantic Web.  

2.1 Semantic Web Building Blocks 

2.1.1 RDF and RDF-S 
RDF [4] – Resource Description Framework – is the data 
model, standardize by W3C in the context of the Semantic Web 
activities, for representing Semantic Web resources. It 
expresses information as graphs consisting of triples with 
subject, property and object. All of them can be identified using 
IRIs. RDF allows describing a generic resource (the subject of 
the triples) by stating that a predicate (the property) assumes a 
given value (the object).  
Consider, for instance, the graph in Table 1. It describes “St 
Mark’s  Clocktower” in Venice. It is taken from DBpedia. The 
resource  http://dbpedia.org/page/St_Mark%27s_Clocktower 
(at line 6) is stated (at line 7) to belong to the category “Visitor 
attractions in Venice” using the property skos:subject [5].  
In order to explain the rest of the RDF graph in Table 1, we 
need to introduce7 the notion of vocabulary and RDF-S [6] – 
RDF Schema – as one of the language available for describing 
vocabularies in the Semantic Web.  
                                                                 
7  Readers are not supposed to know RDF-S (or more 

expressive language) for the purpose of this paper; therefore 
we limit the description to a minimum. 



 

1. @prefix dbpedia: <http://dbpedia.org/resource/> . 
2. @prefix dbcat: <http://dbpedia.org/resource/Category:> .  
3. @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
4. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
5. @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> . 
 
6. http://dbpedia.org/resource/St_Mark%27s_Clocktower 
7.    skos:subject dbcat: Visitor_attractions_in_Venice; 
8.    rdfs:label "St Mark's Clocktower"@en ; 
9.    geo:long "12.338912"^^xsd:float ; 
10.    geo:lat  "45.434710"^^xsd:float . 

Table 1 - Part of the RDF graph that described the “Basilica of 
Sant’Ambrogio” in DBpedia. 

A vocabulary is a collection of properties (such as the 
skos:subject property that we exemplified above) and 
concepts for which the semantics is defined using an 
ontological language. RDF-S, as light ontological language, 
allows defining classes, and properties. For instance, RDF-S is 
used to model the W3C vocabulary for geo positioning [7]. 
Among other things, this vocabulary introduces the properties 
geo:lat and geo:long that respectively represent latitude and 
longitude using WGS84 as a reference datum. Use of these two 
properties is shown at line 9 and 10 in Table 1.  
RDF-S also offers a small vocabulary to describe resources. 
e.g., rdf:label which is largely used to attach a textual label to 
a resource; see line 8 in Table 1. 

2.1.2 SPARQL 
SPARQL [8] – Simple Protocol And RDF Query Language – is 
the language, proposed by W3C, for querying RDF data 
published on the Web. SPARQL offers a syntactically SQL-like 
language for querying RDF graphs. 
A SPARQL query is composed by five parts (see Figure 1): 
zero or more prefix declarations, a query result clause, zero or 
more FROM or FROM NAMED clauses, a WHERE clause and zero or 
more query modifiers. 

PREFIX foo: <…>
PREFIX bar: <…>
…
SELECT …
FROM <…>
FROM NAMED <…>
WHERE {

…
}
ORDER BY …
LIMIT …
OFFSET …

Declare prefix
shortcuts 
(optional)

Query result 
clause

Triple patterns

Query 
modifiers
(optional)

Define the 
dataset 

(optional)

 
Figure 1 The anatomy of a SPARQL Query 

The optional PREFIX declarations introduce shortcuts for long 
IRIs as normally done when working with XML namespaces. 
Such prefixes can be used in the WHERE clause.  
The query result clause specifies one of the four form of the 
results: SELECT, ASK, CONSTRUCT and DESCRIBE.  SELECT queries, 
the only one we treat in this paper, provide answers in a tabular 
form as if the SPARQL query were a SQL query executed 
against a relational database. The optional set of FROM or FROM 
NAMED clauses define the dataset against which the query is 
executed. 
The WHERE clause is the core of a SPARQL query. It is specified 
in terms of a set of triple patterns. As extensively explained in 
the following sections, these triple patterns are used to select 
the triples composing the result. 
Finally, the set of optional query modifiers operate over the 
triples selected by the WHERE clause, before generating the 

result. As in SQL, the clause ORDER BY orders the results set, the 
LIMIT and OFFSET allow getting results in chunks.  

2.2 Treating non-RDF Database as Virtual RDF Graphs 

As Semantic Web technologies are getting mature, there is a 
growing need for RDF applications to access the content of 
non-RDF, legacy databases without having to replicate the 
whole database into RDF.  
Since 2003, several solutions have been conceived and 
implemented [9-12,15]. Conceptually, they are very similar. 
They provide (in slightly different ways) declarative languages 
to describe mappings between relational database schemata and 
RDF-S vocabularies (or more expressive ontological 
languages). Once the mapping is ready, they can use it to 
rewrite SPARQL query in SQL. We refer interest readers to [9] 
and [10] for a comprehensive explanation of the mapping 
languages of D2RQ and Virtuoso and of the query rewriting 
algorithms. 

2.3 State-of-the-Art in Spatial Dimension of Semantic Web 

As we report in Section 1, the Semantic Web community has 
devoted very limited attention to the spatial dimension of 
Linked Data. In this section we briefly present two successful, 
but limited, attempts in this direction: Virtuoso and 
Allegrograph. 

2.3.1 Virtuoso 
Virtuoso is a hybrid middleware and database engine that 
among many other features supports RDF and SPARQL. In 
particular, Virtuoso includes a spatial extension to SPARQL 
inspired by SQL MM spatial specification [13]. Spatial 
indexing is supported by a two dimensional R-tree 
implementation. The geometries supported are limited to two 
dimensions, with a choice of WGS 84 latitude and longitude 
coordinates with haversine distances or a flat 2 dimensional 
plane for spatial reference system. 
Virtuoso supports few spatial data types (i.e., points and 
geometry) and provides some basic functions for spatial 
processing compatible with SQL/MM spatial standard [13], i.e., 
st_contains, st_distance, st_intersects, and st_within. The 
proposed SPARQL extension is SPARQL compliant as it use 
extensible value testing (see Section of [8]). For instance, the 
SPARQL query in Table 2 counts the objects of each class 
occurring within 100 km of <0, 52>, a point near London. 
 

1. PREFIX  geo:  <http://www.w3.org/2003/01/geo/wgs84_pos#>   
2. SELECT  ?class COUNT (*)  
3. WHERE  {  
4.   ?m  geo:geometry  ?geo .  
5.   ?m  rdf:type ?class  .  
6.   FILTER ( bif:st_intersects( ?geo, bif:st_point(0, 52), 100)) 
7. } GROUP BY  ?class 

Table 2 – An example of spatial enhanced SPARQL query 
supported by Virtuoso. 

2.3.2 AllegroGraph 
AllegroGraph is a Semantic Web application framework. 
Among other features, AllegroGraph supports an encoded data-
type for geospatial coordinates, and extends SPARQL to 
support for geospatial queries. 
It introduces a special syntax to match variables by the means 
of: (a) RADIUS, taking a cartesian point and a numeric radius, or 
(b) BOUNDINGBOX, taking two points, or (c) HAVERSINE, taking a 
spherical point and a radius. Moreover, it defines extension 
functions to measure cartesian and haversine distance. Table 3 



 

shows an example of spatial enhanced SPARQL query 
supported by AllegroGraph. 

 
1. SELECT * {   
2.   GEO   
3.   SUBTYPE ...   
4.   RADIUS (POINT(?lon, ?lat), ?rad) {   
5.     # Some patterns, possibly mentioning ?lon, ?lat, ?rad.   
6.   }   
7.   WHERE {   
8.     ?p foo:placename "Home" ;   
9.          geo:lat ?lat ;   
10.          geo:lon ?lon .   
11.     OPTIONAL {  ?p geo:radius ?rad .  }   
12.   }   
13. } 

Table 3 – An example of spatial enhanced SPARQL query 
supported by AllegroGraph. 

3. RUNNING EXAMPLE 

In this section, we present a simple running example that 
requires both a light reasoning support and the features of a 
GIS. 
As we stated in the Section 1, a large part of LD has a spatial 
dimension. Consider, as a notable example, the squares and the 
monuments of a city. In DBpedia the categories “squares and 
plazas by city”8 and “visitor attraction by city”9 exist. They 
both have a subcategory for each city, which in turn contains 
other subcategories. Actual squares and visitor attractions are 
leafs in these two disjoint trees of categories. Each square or 
visitor attraction is described with a large set of information 
including their latitude and longitude. Moreover, geo-tagged 
photos of squares and monuments already interlinked with 
DBpedia resources can be obtained using simple solutions like 
flickr™ wrappr [14]. Finally, the shape of the squares and of 
the buildings that contains the visitor attraction can be retrieved 
from OpenStreetMap.  
Given this information, our running example requires to design 
a system able to answer the following question:  

Which are the monuments of Italy that overlook a 
square in which more than 100 photos where geo-
tagged? 

 
Figure 2 St Mark’s Square as in OpenStreetMap. The lines in 
overlay represent the shape of the buildings, the boundaries of 
the square and the streets. The dots are point of interest. 

                                                                 
8 http://dbpedia.org/page/Category:Squares_and_plazas_by_city  
9 http://dbpedia.org/page/Category:Visitor_attractions_by_city 

 
Figure 3 St Mark’s Square as in Flikr, more than 2 hundred 
thousand photo are geotag with latitude and longitude 
compatible with Venice. 

The query is difficult to answer for many reasons. It requires 
selectively traversing the transitive closure of the two DBpedia 
category trees in order to retrieve the squares and the visitor 
attractions of Italian cities. It requires retrieving the shape of the 
squares from OpenStreetMap (see Figure 2, for an example 
related to Venice), retrieving the photos from Flikr (see Figure 
3, for an example related to venice), and checking if at least the 
geotags of 100 photos are contained in one of the squares. 
Finally, it requires retrieving from OpenStreetMap also the 
shape of the buildings that contains the visitor attractions and 
checking if the these shapes touch the shape of the squares (i.e., 
the building overlooks the square).  
As an answer, for instance concerning St Mark square in 
Venice, we may expect: 
• St Mark’s Basilica  

http://dbpedia.org/page/St_Mark%27s_Basilica  
• St Mark's Clocktower  

http://dbpedia.org/page/St_Mark%27s_Clocktower  
• Doge's Palace 

http://dbpedia.org/page/Doge%27s_Palace  

4. ARCHITECTURE 

Answering the query formulated in Section 3 requires a system 
with the following characteristics: 

1. ability to process RDF and to access and process LD such 
as DBpedia; 

2. minimal reasoning support to compute the transitive 
closure of the two trees of categories; 

3. (last but not least) support for comparing geometries, such 
as contains and touches. 

Two extreme solutions for such a system can be envisioned: 
• adding geometric data types and methods to a native RDF 

repository and extend SPARQL to handle such data types 
and invoke such methods; or 

• providing access to non-RDF, GIS databases, using the 
Virtual RDF approach [9], thus extending both the 
mapping language and SPARQL to handle GIS data types 
and geometric methods. 

AllegroGraph is an example of the first approach; Virtuoso is 
an early, but limited attempt, of the second approach strictly 
coupled with its SQL engine. Our GIS-to-RDF (G2R) approach 
is an attempt to provide a solution that can be coupled with any 
GIS using a mapping file.  



 

The architecture of G2R is illustrated in Figure 4. The G2R 
Engine is in the centre of the figure. It enables both remote and 
local standard SPARQL clients to query data in a GIS as long 
as the G2R Engine is provided with an appropriate mapping 
file.  
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Clients

SPARQL G2R
Engine

Remote SPARQL 
Clients

GIS

G2R 
mapping 

file

 
Figure 4 the architecture of G2R Engine 

The mapping file format is an extension of D2RQ format [15]. 
G2R mapping language supports any SQL92 compatible 
database (thanks to D2RQ mapping language) and allows 
coupling any GIS for which a one-to-one mapping to SQL/MM 
spatial methods and data types can be written. 

5. G2R MAPPING LANGUAGE 

As we anticipated in Section 4, G2R mapping language extends 
D2RQ mapping language [9].  
Both are declarative languages for describing the relation 
between a relational database schemata and RDF-S 
vocabularies (or OWL ontologies). A database schema is 
mapped in a RDF-S vocabulary using d2rq:ClassMap  and 
d2rq:PropertyBridge. A ClassMap specifies how to retrieve 
instances of a given class from the database. PropertyBridges, 
instead, specify how to retrieve the pair of <property,value> for 
each instance, and how to relate instances with a given 
property. 
For instance, consider the ER model in Figure 5; it represents a 
building in OpenStreetMap. Mapping it to RDF requires a 
ClassMap and a PropertyBridge.  
The ClassMap maps the entity “Building” in a RDF-S Class, 
e.g., http://linkedgeodata.org/vocabulary#building; and 
virtually creates instances using the following IRI pattern: 
http://ex.g2r.org/buildings/@@ID@@. The PropertyBridge 
can map the attribute “name” of the entity “Building” in 
rdfs:label and virtually creates triples such as: 

ex:25466045 rdfs:label "St Mark's Clocktower". 

Building
string: name

int: ID
polygon: area

 
Figure 5 An ER model of a building in OpenStreetMap. 

The attribute “area” cannot be mapped using D2RQ, because it 
use the geometric data type polygon. G2R offers an extension 
of d2rq:PropertyBridge, named g2r:SpatialPropertyBridge, 
that allows to map the attribute “area” to any property whose 
range is a g2r:Geometry.  

Geometry

Surface Curve Point GeometryCollection

CurvePolygon

Polygon Linear Circular Compound MultiSurface MultiCurve MultiPoint

 
Figure 6 G2R hierarchy of classes representing SQL/MM 
spatial standard data types. 

G2R support all geometry data types defined in SQL/MM 
spatial standard (see Section 2.2 of [13]). G2R hierarchy of 
classes is illustrated in Figure 6. For instance, the 
SpatialGeometryBridge in Table 4 maps the attribute “area” 
(identified at line 4 using the property g2r:spatialColumn) into 
the user defined property ex:hasSurface (see line 3) whose 
domain is a g2r:Polygon (as specified at line 5). 

1. map:area a g2r:SpatialPropertyBridge; 
2.     d2rq:belongsToClassMap map:Building; 
3.     d2rq:property ex:hasSurface; 
4.     g2r:spatialColumn "area";  
5.     d2rq:datatype g2r:Polygon . 

Table 4 – An example of G2R mapping applied to the attribute 
“area” of the entity “Building” shown in Figure 5. 

Last, but not least, G2R offers the full range of spatial methods 
specified in SQL/MM spatial standard (see Section 2.3 of [13]). 
It includes methods to: 

• convert to and from exchange data formats such as 
GML (i.e., g2r:AsGML); 

• retrieve properties of the geometry such as the length 
(i.e., g2r:Length), or the coordinates of a point in the 
geometry (i.e., g2r:_N where N=1 is the start point); 

• compare two geometries such as  
o g2r:isDisjoint that tests whether two geometries 

do not intersect; 
o g2r:intersects, g2r:crosses, and g2r:overlaps 

that test whether the interiors of the geometries 
intersect; 

o g2r:touches that tests whether two geometries 
touch at their boundaries, but do not intersect in 
their interiors; and 

o g2r:isWithin and g2r:contains that test whether 
one geometry is fully within the other. 

• generate new geometries such as 
o g2r:Point, g2r:Polygon, and similar ones for all 

the other geometric data types that creates 
geometric instances; 

o g2r:createBuffer that generates a buffer at a 
specific distance around the given geometry; 

o g2r:createConvexHull that computes the convex 
hull for a geometry; and 

o g2r:Difference, g2r:Intersection, g2r:Union 

that construct the difference, intersection, or union 
between the point sets defined by two geometries. 

All these methods can be invoked within a standard SPARQL 
query in the FILTER clause leveraging the Extensible Value 
Testing of SPARQL (see Section 11 of [8]). For an example, 
see lines 9 and 10 in Table 5. 

6. QUERYING G2R 

As explained in Section 4, a G2R Engine can be queried using a 
standard SPARQL query. For instance, a large part of the 
running example query, presented in Section 3, can be encoded 
in SPARQL as shown in Table 5. 

1. SELECT ?squareName ?attractionName  
2. FROM 
3. WHERE { 
4.    ?square rdfs:label ?squareName . 
5.    ?square ex:hasSurface ?squareSurface . 
6.    ?attraction rdfs:label ?attractionName . 
7.    ?attraction ex: hasSurface ?attractionSurface . 
8.    ?photo ex:geoTagged ?point . 
9.    FILTER (g2r:contains(?squareSurface, ?point) && 
10.                    g2r:touches (?squareShape, ?attractionShape)) 



 

11. } GROUP BY ?squareName 
12. HAVING (COUNT(?photo) > 100). 

Table 5 – An example of SPARQL query that G2R can evaluate 
leveraging a GIS like PostGIS. 

Let’s assume that all data are stored in PostGIS10 as three 
tables: squares, buildings and photos. Let’s also assume that all 
three tables have been mapped already in RDF as illustrated in 
Section 5 using G2R mapping language. When the G2R Engine 
receives the SPARQL query in Table 5, it rewrites such a query 
in the SQL statement shown in Table 6. Note that such 
statement employs the spatial method ST_Within and 
ST_Touches. 

1. SELECT s.name, b.name,  
2. FROM buildings AS b, squares AS s, photos AS p 
3. WHERE  b.area.ST_Within(p.geoTagged) = 1 AND 
4.                 b.area.ST_Touches (s.area) = 1 
5. GROUP BY s.name 
6. HAVING COUNT (p.geoTagged) > 100 

Table 6 – The SQL statement obtained by G2R Engine when 
processing the SPARQL query in Table 5. 

The missing part of the running example query, presented in 
Section 3, is the one that transitively traverse the DBpedia 
category trees of “squares and plazas by city” and “visitor 
attraction by city” selecting only squares and visitor attraction 
from Italy. The complete SPARQL query, which makes use of 
SPARQL 1.1 [16] subquery support, is illustrated in Table 7. 
The two subqueries are highlighted in grey. 

1. SELECT ?squareName ?attractionName  
2. FROM 
3. WHERE { 
4.    ?square rdfs:label ?squareName . 
5.  { SELECT ?square 
6.     WHERE {   
7.                        ?square skos:subject dbcat:squares_and_plazas_by_city 

. 
8.                        ?square owl:sameAs ?squareInGeoNames . 
9.                        FILTER (regex(str(?squareInGeoNames), “geonames”) 
10.                        ?squareInGeoNames gn:inCountry gn:IT . } 
11. } 
12.    ?square ex:hasSurface ?squareSurface . 
13.    ?attraction rdfs:label ?attractionName . 
14. { SELECT ?attraction 
15.     WHERE {   
16.                       ?attraction skos:subject dbcat:visitor_attraction _by_city 

. 
17.                       ?attraction owl:sameAs ?attractionInGeoNames . 
18.                      FILTER (regex(str(?attractionInGeoNames), 

“geonames”) 
19.                      ?attractionInGeoNames gn:inCountry gn:IT . } 
20. } 
21.    ?attraction ex: hasSurface ?attractionSurface . 
22.    ?photo ex:geoTagged ?point . 
23.    FILTER (g2r:contains(?squareSurface, ?point) && 
24.                    g2r:touches (?squareShape, ?attractionShape)) 
25. }  
26. GROUP BY ?squareName 
27. HAVING (COUNT(?photo) > 100). 

Table 7 – A SPARQL query that capture the running example 
query presented in Section 3. 

Executing each of the two subqueries requires a SPARQL 
endpoint that evaluates them under RIF entailment regimes (see 
section 2.7 of [17]), because it has to process the two 
production rules shown in Table 8. 

                                                                 
10 PostGIS is an open source software program that adds 

support for geographic objects to the PostgreSQL database. 
Interested readers can read more at the following location 
http://www.postgis.org/. 

1. IF (?i skos:subject ?x)  and (?x skos:broader?y)  
   THEN (?i skos:subject ?y) 

2. IF (?x skos:broader ?y) and (?y skos:broader ?z)  
    THEN (?x skos:broader ?z) 

Table 8 – Two rules that capture a possible interpretation of 
SKOS vocabulary. 

The first rule declares that if a resource belongs to a category 
(i.e., is related to a category by skos:subject), then it also 
belongs to the its direct super-category (i.e., a category related 
to the stated one by skos:broader). The second one allows to 
transitively traverse the hierarchy of categories following the 
skos:broader properties. 

7. IMPLEMENTATION EXPERIENCE 

Using the LarKC platform [18], we designed and implemented 
a G2R Engine able to process queries of the kind shown in 
Table 8.  
The LarKC platform has a pluggable architecture in which it is 
possible to exploit techniques and heuristics from diverse areas 
such as databases, machine learning, cognitive science, 
Semantic Web, and Geographic Information Systems. A LarKC 
application consists of a number of pluggable components 
arranged in a workflow executed by the LarKC platform. 
LarKC plug-ins cover a variety of tasks, each one concretized 
by a different plug-in type: 

• Identification of sources of information potentially 
useful to answer the query issued by the client; 

• Fetching information from the identified sources; 
• Selection of a relevant subset of the fetched 

information; 
• Translation of information from the source format in 

RDF or translation of queries from SPARQL to 
source specific query language; and 

• Reasoning on the collected information in order to 
provide answers to the query issued by the client. 

Following the approach described in [19], when G2R receives 
the queries, first of all, it uses the Linked Data Search Engine 
Sindice [20] to identify potentially useful resources in DBpedia, 
and it fetch them. Secondly, the G2R Engine uses a query 
translator to look for subqueries like the those highlighted in 
Table 7; if it finds them, it evaluates them using as reasoner the 
Jena General Purpose Rule Engine [21] which support 
SPARQL under RIF entailment regime. Finally, for each square 
and visitor attraction in the same city, it rewrites the SPARQL 
query shown in Table 5 into the SQL statement shown in Table 
6. It does so by using another query translator that interprets 
the mapping file designed by the user. The statement is 
evaluated by PostGIS and results are translated back into a 
SPARQL variable binding which is sent back to the client. 

8. COMPARATIVE EVALUATION 

A comparison of G2R, Virtuoso and AllegroGraph, on the bases 
of the spatial features supported, is illustrated in Table 9 and 10. 

Data Type G2R Virtuoso AllegroGrap
h 

Geometry √ √  
- Surface √   
   -CurvePolygon √   
     - Polygon √   
- Curve √   
   - Linear √   
   - Circular √   
   - Compound √   



 

- Point √ √ √
- GeometryCollection √   
   - MultiSurface √   
   - MultiCurve  √   
   - MultiPoint √   

Table 9 – A comparison between G2R, Virtuoso and 
AllegroGraph supported data types. 

Data Type G2R Virtuos
o 

AllegroGrap
h 

convert to and from exchange data 
formats  

√ √1  

retrieve properties  √ √2  
compare two geometries  √   
 - is disjoint √   
 - intersects √ √  
 - crosses √   
 - overlaps √   
 - touches √   
 - is within/contains  √ √4 √4 
generate new geometries √ √3  
 √   
 √   
 √   
1 limited to WKT representations 
2 limited to isGeometry 
3 limited to Point data type 
4 limited to points contained in a given radius 

Table 10 – A comparison between G2R, Virtuoso and 
AllegroGraph supported spatial methods. 

As one can read from the table, the approach of G2R to treat 
GIS as Virtual RDF Graphs pays off. Instead of re-
implementing GIS support in Semantic Web framework, G2R 
allows for mapping spatial data types into any RDF-S 
vocabulary (or OWL ontology) and to benefit from a large set 
of already implemented method that operates on spatial data 
types. 

9. CONCLUSIONS 

In this paper, we reported our experience in adding a spatial 
dimension to the Semantic Web and, in particular, to SPARQL. 
We discussed the need for treating GIS as Virtual RDF Graphs, 
instead of re-implementing typical GIS functionalities in 
existing Semantic Web frameworks.  
The core of our contribution is a declarative mapping language 
that extends D2RQ mapping language [15] to support spatial 
data types.  
We also present our prototypical implementation of a G2R 
Engine based on the LarKC framework. Such prototype allows 
SPARQL query involving spatial computation to be executed in 
a mixed environment where a GIS (i.e., PostGIS) and a 
SPARQL endpoint, operating under RIF entailment regime  
(i.e., Jena General Purpose Rule Engine), are orchestrated.  
The approach is evaluated by comparing G2R against two 
similar solution provided by Virtuoso e AllegroGraph. A 
broader qualitative comparison with other existing solutions as 
well as s quantitative comparison on a large data set is next in 
our research agenda. 
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